46 research outputs found

    Ectopic Wnt/Beta–Catenin Signaling Induces Neurogenesis in the Spinal Cord and Hindbrain Floor Plate

    Get PDF
    The most ventral structure of the developing neural tube, the floor plate (FP), differs in neurogenic capacity along the neuraxis. The FP is largely non-neurogenic at the hindbrain and spinal cord levels, but generates large numbers of dopamine (mDA) neurons at the midbrain levels. Wnt1, and other Wnts are expressed in the ventral midbrain, and Wnt/beta catenin signaling can at least in part account for the difference in neurogenic capacity of the FP between midbrain and hindbrain levels. To further develop the hypothesis that canonical Wnt signaling promotes mDA specification and FP neurogenesis, we have generated a model wherein beta–catenin is conditionally stabilized throughout the FP. Here, we unambiguously show by fate mapping FP cells in this mutant, that the hindbrain and spinal cord FP are rendered highly neurogenic, producing large numbers of neurons. We reveal that a neurogenic hindbrain FP results in the altered settling pattern of neighboring precerebellar neuronal clusters. Moreover, in this mutant, mDA progenitor markers are induced throughout the rostrocaudal axis of the hindbrain FP, although TH+ mDA neurons are produced only in the rostral aspect of rhombomere (r)1. This is, at least in part, due to depressed Lmx1b levels by Wnt/beta catenin signaling; indeed, when Lmx1b levels are restored in this mutant, mDA are observed not only in rostral r1, but also at more caudal axial levels in the hindbrain, but not in the spinal cord. Taken together, these data elucidate both patterning and neurogenic functions of Wnt/beta catenin signaling in the FP, and thereby add to our understanding of the molecular logic of mDA specification and neurogenesis

    SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress

    Get PDF
    Parkinson's disease (PD) is an incurable age-related neurodegenerative disorder affecting both the central and peripheral nervous systems. Although common, the etiology of PD remains poorly understood. Genetic studies infer that the disease results from a complex interaction between genetics and environment and there is growing evidence that PD may represent a constellation of diseases with overlapping yet distinct underlying mechanisms. Novel clinical approaches will require a better understanding of the mechanisms at work within an individual as well as methods to identify the specific array of mechanisms that have contributed to the disease. Induced pluripotent stem cell (iPSC) strategies provide an opportunity to directly study the affected neuronal subtypes in a given patient. Here we report the generation of iPSC-derived midbrain dopaminergic neurons from a patient with a triplication in the α-synuclein gene (SNCA). We observed that the iPSCs readily differentiated into functional neurons. Importantly, the PD-affected line exhibited disease-related phenotypes in culture: accumulation of α-synuclein, inherent overexpression of markers of oxidative stress, and sensitivity to peroxide induced oxidative stress. These findings show that the dominantly-acting PD mutation is intrinsically capable of perturbing normal cell function in culture and confirm that these features reflect, at least in part, a cell autonomous disease process that is independent of exposure to the entire complexity of the diseased brain

    Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System

    Get PDF
    During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain

    Methods for assessing the regenerative responses of neural tissue

    Get PDF
    In order to establish novel therapeutic paradigms and advance the field of regenerative medicine, methods for their effective implementation as well as rigorous assessment of outcomes are critical. This is especially evident and challenging in the context of treating complex and devastating neurodegenerative disorders, such as Parkinson’s disease, multiple sclerosis, and ischemic stroke. Stem cell-based approaches offer great promise in addressing these conditions. Here, we demonstrate an approach for identifying factors that mobilize endogenous neural stem cells in the repair and recovery of the central nervous system of rodents, involving site-specific administration of growth factors that activate particular signal transduction pathways, and that allows for the assessment of outcome utilizing magnetic resonance imaging and immunohistochemistry

    Theoretical Modeling of Low Frequency Acoustic Scattering from Subsurface Bubble Structures

    No full text

    Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency.

    No full text
    Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization

    Genetic variation in FGF20 modulates hippocampal biology

    No full text
    We explored the effect of single-nucleotide polymorphisms (SNPs) in the fibroblast growth factor 20 gene (FGF20) associated with risk for Parkinson's disease on brain structure and function in a large sample of healthy young-adult human subjects and also in elderly subjects to look at the interaction between genetic variations and age (N = 237; 116 men; 18-87 years). We analyzed high-resolution anatomical magnetic resonance images using voxel-based morphometry, a quantitative neuroanatomical technique. We also measured FGF20 mRNA expression in postmortem human brain tissue to determine the molecular correlates of these SNPs (N = 108; 72 men; 18-74 years). We found that the T allele carriers of rs12720208 in the 3\u2032-untranslated region had relatively larger hippocampal volume ( p = 0.0059) and diminished verbal episodic memory ( p = 0.048) and showed steeper decreases of hippocampal volume with normal aging (p = 0.026). In postmortem brain, T allele carriers had greater expression of hippocampal FGF20 mRNA ( p = 0.037), consistent with a previously characterized microRNA mechanism. The C allele matches a predicted miR-433 microRNA binding domain, whereas the T allele disrupts it, resulting in higher FGF20 protein translation. The strong FGF20 genetic effects in hippocampus are presumably mediated by activation of the FGFR1 (FGF receptor 1), which is expressed in mammalian brain most abundantly in the hippocampus. These associations, from mRNA expression to brain morphology to cognition and an interaction with aging, confirm a role of FGF20 in human brain structure and function during development and agin

    Fibroblast Growth Factor 20 Polymorphisms and Haplotypes Strongly Influence Risk of Parkinson Disease

    Get PDF
    The pathogenic process responsible for the loss of dopaminergic neurons within the substantia nigra of patients with Parkinson disease (PD) is poorly understood. Current research supports the involvement of fibroblast growth factor (FGF20) in the survival of dopaminergic cells. FGF20 is a neurotrophic factor that is preferentially expressed within the substantia nigra of rat brain. The human homologue has been mapped to 8p21.3-8p22, which is within an area of PD linkage revealed through our published genomic screen. To test whether FGF20 influences risk of PD, we genotyped five single-nucleotide polymorphisms (SNPs) lying within the FGF20 gene, in a large family study. We analyzed our sample (644 families) through use of the pedigree disequilibrium test (PDT), the genotype PDT, the multilocus-genotype PDT, and the family-based association test to assess association between risk of PD and alleles, genotypes, multilocus genotypes, and haplotypes. We discovered a highly significant association of PD with one intronic SNP, rs1989754 (P=.0006), and two SNPs, rs1721100 (P=.02) and ss20399075 (P=.0008), located in the 3′ regulatory region in our overall sample. Furthermore, we detected a haplotype (A-G-C-C-T) that is positively associated with risk of PD (P=.0003), whereas a second haplotype (A-G-G-G-C) was found to be negatively associated with risk of PD (P=.0009). Our results strongly support FGF20 as a risk factor for PD
    corecore